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A B S T R A C T

Instance-level facial attribute transfer aims at transferring an attribute including its style from a source face to
a target one. Existing studies have limitations on fidelity or correctness. To address this problem, we propose a
weakly supervised style disentangling method embedded in Generative Adversarial Network (GAN) for accurate
instance-level attribute transfer, using only binary attribute annotations. In our method, the whole attributes
transfer process is designed as two steps for easier transfer, which first removes the original attribute or
transfers it to a neutral state and then adds the attributes style disentangled from a source face. Moreover, a
style disentangling module is proposed to extract the attribute style of an image used in the adding step. Our
method aims for accurate attribute style transfer. However, it is also capable of semantic attribute editing as
a special case, which is not achievable with existing instance-level attribute transfer methods. Comprehensive
experiments on CelebA Dataset show that our method can transfer the style more precisely than existing
methods, with an improvement of 39% in user study, 16.5% in accuracy, and about 3.3 in FID.
. Introduction

Facial attribute manipulation is a challenging task in computer vi-
ion, which is widely used in many applications such as entertainment,
utomatic photoshop, face recognition, etc. Most existing studies (Choi
t al., 2018; He et al., 2019; Romero et al., 2019; Xu et al., 2019;
pchurch et al., 2017; Zhao et al., 2018; Zhang et al., 2018; Lample
t al., 2017; Larsen et al., 2016; Chen et al., 2018; Wu et al., 2019) focus
n semantic-level facial attribute editing, that aims at adding or removing
pecific attributes, e.g. adding a mustache or removing bangs. These
ethods can get results with high fidelity, but they only care about
hether an attribute is added or not and do not care about what the
tyle of the attribute is. However, people may be more interested in
dding an attribute with a specific style. For example, can we copy the
angs style from a movie star to our head? This kind of task is called
nstance-level facial attribute transfer, i.e. to transfer the attribute style
rom one image to another as shown in Fig. 1, which is more flexible
nd controllable than semantic-level editing.

Instance-level facial attribute transfer is more challenging because
f lacking annotation — precise attribute style is extremely hard to
e defined and annotated. Therefore, we resort to the more easily
ccessible binary attribute annotation (i.e. with or without an attribute,
eaker supervision than the precise attribute style). Existing studies
f instance-level facial attribute transfer are still preliminary. Sev-
ral semantic-level editing methods (He et al., 2019; Romero et al.,
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E-mail addresses: xuyang.guo@vipl.ict.ac.cn (X. Guo), kanmeina@ict.ac.cn (M. Kan), zhenliang.he@vipl.ict.ac.cn (Z. He), songxingguang@huawei.com
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2019; Xu et al., 2019) can achieve multi-mode editing of an attribute,
i.e. adding an attribute with several choices of coarse styles, such as
left bangs, right bangs, or thin bangs, but cannot transfer the attribute
from one image to another. Some works are specialized for specific
attributes, including expression (Ding et al., 2018), eyeglasses (Hu et al.,
2020), makeup (Li et al., 2018; Chang et al., 2018), and global image
style (Huang et al., 2018; Lee et al., 2020b; Yu et al., 2019; Choi et al.,
2020). However, these methods are not applicable for transferring of
various attributes.

Recently, several works (Zhou et al., 2017; Xiao et al., 2018a,b; Yin
et al., 2019; Lee et al., 2020a) provide general solutions for instance-
level attribute transfer. GeneGAN (Zhou et al., 2017) learns an encoder
to disentangle the attribute with style from the attribute-unrelated in-
formation, then combines one’s style and another’s attribute-unrelated
information to achieve the transfer. DNA-GAN (Xiao et al., 2018a) is
a multi-attribute extension of GeneGAN. Inspired by GeneGAN and
DNA-GAN, ELEGANT (Xiao et al., 2018b) achieves the transfer by
exchanging attribute-related latent codes between two faces, which is
capable of higher resolution editing with the more realistic results.
A common problem with these methods is that they lack effective
constraints on the variety of styles, resulting in a less accurate transfer.
For more accurate transfer of attributes, GeoGAN (Yin et al., 2019)
proposes a geometric approach to align the pose of faces and then
copies the attribute-related part from the source image to the target
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Fig. 1. Illustration of instance-level facial attribute transfer, that transfers style of bangs and smiling from several source faces to a target face respectively.
Fig. 2. An overview of our Style Disentangling GAN (STD-GAN). The whole process includes an attribute removing step and an attribute adding step. Style disentangling module
is used to extract style information from a source image via an encoder 𝐸.
2

one. But it still cannot perform well for those attribute scattering in
large areas such as mouth open and hair color. To accurately manipulate
the attribute area, MaskGAN (Lee et al., 2020a) uses an attribute
segmentation mask to enforce the target face to have the same attribute
scope as the source one. However, it cannot deal with color or texture-
related details. Besides, the annotation of attribute segmentation is
expensive to acquire during training and testing.

In summary, the existing state-of-the-art instance-level transfer
methods for general attributes are GeoGAN and ELEGANT. However,
these methods have their limitations. GeoGAN can maintain the correct
style for some attributes like eyeglasses through a geometric method,
but it cannot perform well for attributes scattering in large areas,
and the fidelity of edited images is not satisfactory. ELEGANT can
generate relatively high-fidelity images but lacks the constraint of the
correctness of style coding during its training. Therefore, a method that
can ensure both the fidelity and correctness of the transferred attribute
style is desired. Aiming for this, we propose a method called STyle
Disentangling GAN (STD-GAN) which resolves the limitations of existing
methods.

In our method, the transferring process is designed as two steps for
easier instance-level attribute transfer: (1) a removing step that first
removes the original attribute from the target image or transfers it to
a neutral state; (2) an adding step that adds the attribute with style
extracted from a source image. Moreover, a style disentangling module
is proposed to disentangle the style code from face identity. The style

code is used as input of a generator in the adding step to generate a 𝑥

2

new image with the same attribute style. The model is trained with
the binary attribute annotation indicating with or without an attribute.
Primarily, the proposed method STD-GAN aims for accurate instance-
level attribute transfer. As a special case, STD-GAN degenerates to a
method that is applicable for semantic attribute-editing when there is
no source image for reference. To our best knowledge, our STD-GAN
is the first one that can simultaneously be capable of instance-level
attribute transfer and semantic attribute-editing.

Briefly, our contributions are summarized in three-folds:

1. We propose a novel style disentangling GAN to explicitly encode
the style of each instance from a style disentangling module
for precise instance-level facial attribute transfer. The method
is learned with only binary attribute labels.

2. In a special case of no source image, STD-GAN degenerates to a
method that is applicable for semantic attribute-editing, making
our method capable of both instance-level attribute transfer and
semantic attribute-editing.

3. Our method achieves superior performance compared to the
state-of-the-art in many attributes in terms of visual comparison,
user study, and quantitative evaluation.

. Style disentangling GAN (STD-GAN)

For an attribute 𝐴, given a source image 𝑥𝑠1 and a target image
𝑡 𝑠
, our goal is to transfer the attribute style of the source image 𝑥1



X. Guo, M. Kan, Z. He et al. Computer Vision and Image Understanding 207 (2021) 103205

p
I
T
t

t
t
a
i
t
e

2

a
i
t
e
𝑦
c

2

t
w

𝑥

w
t

2

t

𝑥

w
a
𝐸
t

2

d
a

2

i

𝑥

w
i
c

𝑥

w
𝑈

e
a
a
m
𝑥
a

𝐺
b

w
t
a
m
w
d
o

a

m

m

i

Fig. 3. Illustration of testing with our STD-GAN. Take bangs as an example, the testing
hase aims at transferring the attribute style of source image 𝑥𝑠1 to the target image 𝑥𝑡.
f 𝑥𝑡 has the attribute, firstly remove the original attribute to get �̂�𝑡0, otherwise �̂�𝑡0 = 𝑥𝑡.
hen, �̂�𝑡0 is fed into the generator with the style code 𝑧𝑠 extracted from 𝑥𝑠1 as condition
o get final image �̂�𝑡1.

o the target 𝑥𝑡, where 1 denotes the image with the attribute 𝐴. The
raining data for this problem are images with only binary attribute
nnotations, denoted as 𝑋 = {(𝑥, 𝑦)} where 𝑥 is an image and 𝑦 ∈ {0, 1}
s the corresponding attribute label. 𝑦 = 0 indicates that 𝑥 does not have
he attribute 𝐴 or has a neutral state (e.g. black for hair color, natural
xpression for smiling), and 𝑦 = 1 indicates that 𝑥 has the attribute 𝐴.

.1. Formulation

Our STD-GAN for instance attribute transfer consists of two steps
s shown in Fig. 3: (1) removing the original attribute from the target
mage, (2) transferring the attribute style from the source image to the
arget. Dividing the process into two steps makes each step focus on an
asier task. We design a generator 𝐺(𝑥, 𝑦, 𝑧) for these two steps, where
∈ {0, 1} indicates removing or adding process, 𝑧 indicates the style

ode of the attribute.

.1.1. Removing step
Given a target image 𝑥𝑡, if it has the attribute 𝐴, this step removes

he attribute or transfers it to a neutral state to avoid its interference
ith the attribute information from the source image, formulated as:

̂ 𝑡0 =

{

𝐺(𝑥𝑡, 𝑦 = 0, 𝑧 = 0) if 𝑥𝑡 has the attribute 𝐴
𝑥𝑡 if 𝑥𝑡 does not have the attribute 𝐴

(1)

here the second line means that if 𝑥𝑡 does not have the attribute 𝐴,
he removing step is just skipped.

.1.2. Adding step
This step further adds the desired attribute to generate �̂�𝑡1 which has

he same attribute style as 𝑥𝑠1:

̂ 𝑡1 = 𝐺(�̂�𝑡0, 𝑦 = 1, 𝑧𝑠), with 𝑧𝑠 = 𝐸(𝑥𝑠), (2)

here 𝑦 = 1 indicates adding the attribute 𝐴, and 𝑧𝑠 ∈ R𝑛 is the
ttribute style extracted from the source image 𝑥𝑠 via the encoder
. Through the removing and adding steps, the attribute style is

ransferred from 𝑥𝑠 to 𝑥𝑡.

.2. Objective of STD-GAN

The main modules to be optimized are the generator 𝐺 and the style
isentangling encoder 𝐸. The objective of them and the training process
re presented below.
3

.2.1. Objective of the generator 𝐺
The generator 𝐺 aims at both removing and adding. For a target

mage 𝑥𝑡1 with the attribute, 𝐺 can remove its attribute by

̂ 𝑡0 = 𝐺(𝑥𝑡1, 𝑦 = 0, 𝑧 = 0), (3)

here �̂�𝑡0 should not have the attribute anymore, and look realistic. Sim-
larly, for those images without the attribute such as 𝑥𝑡0, the attribute
an be added by

̂ 𝑡1 = 𝐺(𝑥𝑡0, 𝑦 = 1, 𝑧𝑢), (4)

here 𝑧𝑢 is a given style code sampled from a uniform distribution
𝑛𝑖𝑓 (−1, 1).

Like most adversarial generative methods (Odena et al., 2017; Choi
t al., 2018; He et al., 2019), the above two objectives can be easily
chieved by playing an adversarial game between the generator 𝐺 and
discriminator 𝐷. This discriminator 𝐷 is used for both realistic judg-
ent and attribution classification. Specifically, 𝐷(𝑥) takes an image
as input and outputs two results for classification of real/fake and

ttribute respectively, denoted as 𝐷𝑎𝑑𝑣 and 𝐷𝑐𝑙𝑠.
Fidelity Loss: To ensure the fidelity of those generated images from

, we adopt WGAN (Arjovsky et al., 2017) for the adversarial learning
etween the 𝐺 and 𝐷 as below:

min
𝐺

𝑔
𝑎𝑑𝑣 = −E�̂�∼𝑝𝑔 [𝐷𝑎𝑑𝑣(�̂�)], (5)

min
‖𝐷‖𝐿⩽1

𝑑
𝑎𝑑𝑣 = −E𝑥∼𝑝𝑟 [𝐷𝑎𝑑𝑣(𝑥)] + E�̂�∼𝑝𝑔 [𝐷𝑎𝑑𝑣(�̂�)], (6)

here 𝑝𝑔 is the distribution of generated images and 𝑝𝑟 is the distribu-
ion of real images, �̂� denotes images generated from 𝐺 including �̂�𝑡0
nd �̂�𝑡1, 𝑥 denotes real images including 𝑥𝑡1 and 𝑥𝑡0. The discriminator
akes efforts to distinguish the real images from the generated images,
hile the generator aims to generate real images that can fool the
iscriminator. Here, WGAN-GP (Gulrajani et al., 2017) is used for
ptimization.
Attribute Loss: To ensure the generated images to own the expected

ttribute, the attribute classification loss is exploited as below:

in
𝐷

𝑑
𝑐𝑙𝑠 = E𝑥∼𝑝𝑟 [−𝑙𝑜𝑔𝐷𝑐𝑙𝑠(𝑦𝑥|𝑥)], (7)

in
𝐺

𝑔
𝑐𝑙𝑠 = E�̂�∼𝑝𝑔|𝑦 [−𝑙𝑜𝑔𝐷𝑐𝑙𝑠(𝑦|�̂�)], (8)

where the 𝑑
𝑐𝑙𝑠 aims to optimize an attribute classifier by using the real

image 𝑥 and its own attribute label 𝑦𝑥 ∈ {0, 1}. 𝑔
𝑐𝑙𝑠 aims to optimize the

generator 𝐺 to make the generated image �̂� satisfy the given attribute
via the judgment from the discriminator 𝐷. Here, 𝑝𝑔|𝑦 means the editing
result of 𝐺 given 𝑦 ∈ {0, 1}.

To well preserve attribute-irrelevant region, 𝐺 is implemented as a
residual architecture (Shen and Liu, 2017), i.e. 𝐺(⋅) = 𝑥 + 𝑁(⋅) where
𝑁 is the network to output a residual image.

Style Loss: The above two losses in Eqs. (5) and (8) for 𝐺 ensure
that the transferred image �̂�𝑡1 has the desired attribute, but the attribute
style of the transferred image is not necessarily the same as that of the
source image. Aiming for instance-level style transfer, a style regression
objective is formulated as below:

min
𝐺,𝐸

𝑚𝑖 = E𝑧𝑢 ‖𝑧
𝑢 − �̂�‖22 = E𝑧𝑢

‖

‖

‖

𝑧𝑢 − 𝐸(𝐺(𝑥𝑡0, 𝑦 = 1, 𝑧𝑢))‖‖
‖

2

2
, (9)

where 𝑧𝑢 is a style code randomly sampled from 𝑈𝑛𝑖𝑓 (−1, 1), and �̂�
s the style code of the transferred image �̂�𝑡1. This style loss aims at

enforcing the attribute style �̂� of the transferred image to be the same as
the given attribute style code 𝑧𝑢. Theoretically, sharing the same idea as
InfoGAN (Chen et al., 2016), minimizing E𝑧𝑢 ‖𝑧𝑢 − �̂�‖22 is equivalent to
maximizing the mutual information between �̂�𝑡1 and 𝑧𝑢, which enables
𝐺 to manipulate the style of an image by the style code 𝑧𝑢.

Moreover, for more precise control of style in the adding step, a
cycle reconstruction objective is additionally introduced:

min = E 𝑡
‖

‖𝑥𝑡 − �̃�𝑡 ‖‖ = E 𝑡
‖

‖𝑥𝑡 − 𝐺(�̂�𝑡 , 1, 𝐸(𝑥𝑡 ))‖‖ , (10)

𝐺,𝐸 𝑟𝑒𝑐 𝑥1 ‖ 1 1

‖1 𝑥1 ‖ 1 0 1
‖1
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Algorithm 1: Training algorithm of STD-GAN
input : Images {𝑥} and attribute labels {𝑦} ∈ {0, 1} ;
output: Generator 𝐺 and the style encoder 𝐸;
Initialize 𝐺,𝐸,𝐷,𝐷𝑧, where 𝐸,𝐷 share network;
while not converge do

Sample batch of images 𝑥𝑡1, 𝑥
𝑡
0 ∈ {𝑥} with/without attribute, style

code 𝑧𝑢 ∼ 𝑈𝑛𝑖𝑓 (−1, 1) ;
Compute removing/adding/reconstruction results �̂�𝑡0, �̂�

𝑡
1, �̃�

𝑡
1 using

Eqs. (3), (4) and (10);
Compute overall objective 𝑔 of 𝐺 using Eq. (11);
Update 𝐺 according to 𝑔 with 𝐸,𝐷,𝐷𝑧 fixed;
Sample and compute again as steps 3 ∼ 4 ;
Compute overall objective 𝑑 ,𝑒 of 𝐷,𝐸 using Eqs. (12) and (15);
Update 𝐷,𝐸 according to 𝑑 ,𝑒 with 𝐺,𝐷𝑧 fixed;
Sample batch of images 𝑥𝑠1 ∈ {𝑥} with attribute, style code
𝑧𝑢 ∼ 𝑈𝑛𝑖𝑓 (−1, 1) ;
Compute objective 𝑑𝑧

𝑢𝑛𝑖𝑓 using Eq. (14);
Update 𝐷𝑧 according to 𝑑𝑧

𝑢𝑛𝑖𝑓 with 𝐺,𝐷,𝐸 fixed;
end

which means that an image could be recovered by its own style.
By summing up the above losses, the overall objective for the

generator 𝐺 is formulated as:

min
𝐺

𝑔 = 𝑔
𝑎𝑑𝑣 + 𝜆1

𝑔
𝑐𝑙𝑠 + 𝜆2𝑚𝑖 + 𝜆3𝑟𝑒𝑐 , (11)

here 𝜆1, 𝜆2 and 𝜆3 are the parameters to balance the losses.
Correspondingly, the objective of 𝐷 is formulated as:

in
𝐷

𝑑 = 𝑑
𝑎𝑑𝑣 + 𝜆1𝑑

𝑐𝑙𝑠. (12)

.2.2. Objective of the style encoder 𝐸
The style encoder 𝐸 is a key part, which aims to extract the style

nformation from an image, as shown at the top-right of Fig. 2.
Considering that the style of all instances is distinct, we enforce the

tyle code 𝑧 from all real instances to follow the uniform distribution
𝑛𝑖𝑓 (−1, 1) which has maximum entropy in a finite interval and thus
akes them as different as possible. We apply an adversarial training
ith discriminator 𝐷𝑧 to achieve this goal, formulated as below:

min
𝐸

𝑢𝑛𝑖𝑓 = − E𝑧𝑠∼𝑝𝐸 (𝑥𝑠1)
[𝐷𝑧(𝑧𝑠)], (13)

min
𝐷𝑧

‖𝐿⩽1
𝑑𝑧
𝑢𝑛𝑖𝑓 = − E𝑧𝑢∼𝑈𝑛𝑖𝑓 (−1,1)[𝐷𝑧(𝑧𝑢)] + E𝑧𝑠∼𝑝𝐸(𝑥𝑠1)

[𝐷𝑧(𝑧𝑠)]. (14)

Besides, to make the style encoding related to the attribute rather
than other information, the mutual information loss 𝑚𝑖 between style
code and generated images in Eq. (9) is also used to optimize 𝐸.
Moreover, the cycle reconstruction 𝑟𝑒𝑐 in Eq. (10) is also applied to
improve the style correctness of the generated image. Therefore, the
overall objective of the encoder 𝐸 can be formulated as:

min
𝐸

𝑒 = 𝜆2𝑚𝑖 + 𝜆3𝑟𝑒𝑐 + 𝜆4𝑢𝑛𝑖𝑓 , (15)

where 𝜆2, 𝜆3, and 𝜆4 are parameters to balance the losses.
Moreover, following (Kaneko et al., 2017, 2018), the style encoder

𝐸 shares the network with the attribute classifier 𝐷𝑐𝑙𝑠 except the output
layer, since 𝐷𝑐𝑙𝑠 extracts attribute-related features for classification, so
it would make 𝐸 pay more attention to the given attribute.

2.2.3. Overall training
The four components in our STD-GAN including the generator 𝐺,

the style encoder 𝐸, the discriminator 𝐷 for image adversarial training,
and 𝐷𝑧 for uniform distribution training for style code, are optimized
iteratively according to Eqs. (11), (12), (15) and (14) as shown in

Algorithm 1.

4

2.3. Multi-attribute instance-level transfer

Although we use single attribute editing for example to illustrate the
proposed method in Section 2.1, our STD-GAN is generally applicable
for multi-attribute transfer by extending the attribute label 𝑦 and style
code 𝑧 to {𝑦1, 𝑦2,… , 𝑦𝑘} and {𝑧1, 𝑧2,… , 𝑧𝑘}, where 𝑘 is the number of
attributes, 𝑦𝑖 and 𝑧𝑖 indicates the 𝑖th attribute and its corresponding
style code. In most scenarios, only some of the 𝑘 attributes need to
edit while the others remain unchanged. Considering this, inspired by
STGAN (Liu et al., 2019), the range of input 𝑦𝑖 of 𝐺 is changed from
{0, 1} to {−1, 0, 1}, where −1 means removing attribute, 1 means adding
attribute, while 0 means keeping the attribute unchanged whether or
not the input image 𝑥 has the attribute. When 𝑦𝑖 is −1 or 0, style code
𝑧𝑖 is always set as 0. Accordingly, the dimensionality of outputs from 𝐸
and 𝐷𝑐𝑙𝑠 are expanded to support multiple attributes. The overall loss
function is unchanged.

This generalized STD-GAN for multiple attributes not only disen-
tangles the style of one attribute from the image but also decouples
between multiple attributes to some extent.

For stable training, we first take turns to train the editing of each
single attribute. When the training is stable, we simultaneously train
the editing of all attributes.

2.4. Application to multiple types of editing

After optimization, the style code follows the uniform distribution.
Benefit from this elaborate design, our method is also applicable for
style interpolation and semantic-level editing without any source image,
although it is primarily designed for instance-level transfer between
faces.

Testing of instance-level attribute transfer: As shown in Fig. 4(a), given
a source image 𝑥𝑠1 for reference, our STD-GAN can transfer its attribute
style to a target image 𝑥𝑡0, achieved as �̂�𝑡1 = 𝐺(𝑥𝑡0, 𝑦 = 1, 𝐸(𝑥𝑠1)). This is
the primary goal of this work.

Testing of semantic-level attribute editing: This task aims at adding an
attribute to 𝑥𝑡0 without any source image as shown in Fig. 4(b), achieved
by sampling a style code from 𝑈𝑛𝑖𝑓 (−1, 1):

�̂�𝑡1 = 𝐺(𝑥𝑡0, 𝑦 = 1, 𝑧𝑢), with 𝑧𝑢 ∼ 𝑈𝑛𝑖𝑓 (−1, 1). (16)

Testing of instance-level style interpolation: More interestingly, our
method can achieve continuous style change between two images 𝑥𝑠11
and 𝑥𝑠21 as shown in Fig. 4(c), which is formulated as:

�̂�𝑡1 = 𝐺(𝑥𝑡0, 𝑦 = 1, 𝛼 ⋅ 𝐸(𝑥𝑠11 ) + (1 − 𝛼) ⋅ 𝐸(𝑥𝑠21 )), (17)

where 0 ⩽ 𝛼 ⩽ 1. The interpolation method can be extended to more
than two styles. The result is shown in Section 3.4.

3. Experiments

3.1. Implementation details

We conduct experiments on CelebA dataset (Liu et al., 2015), which
is commonly used for attribute editing. This dataset contains 202599
images, each of which is annotated with 40 binary attributes (with
or without). We use the official protocol for training, validation, and
test split. Besides, we exploit the official face alignment and then crop
the 170 × 170 center part and resize it to 256 × 256. In the training
process, the training images are horizontally flipped with a probability
of 0.5 for data augmentation. In all experiments, seven attributes with
clearer meaning of styles are selected for evaluation, including bangs,
eyeglasses, smiling, mustache, mouth slightly open, wearing lipstick and
hair color (black as negative, brown and blond as positive), which
cover most attributes used in the existing works (they usually use 3–5
attributes for evaluation).

In the training phase, we adopt Adam optimizer (Kingma and Ba,
2015) (𝛽 = 0.5, 𝛽 = 0.999 and the learning rate of 1 × 10−4) with a
1 2
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Fig. 5. Visual comparison on instance-level style transfer of Bangs.

Fig. 6. Visual comparison on instance-level style transfer of Mustache.

atch size of 8 images. The coefficients in Eqs. (11), (12) and (15) are
et as: 𝜆1 = 5, 𝜆2 = 5, 𝜆3 = 30 and 𝜆4 = 0.1 to make the magnitudes of
hese losses have similar order. The dimension 𝑛 of the style code 𝑧 is

experimentally set as 16.
In the testing phase, similar to existing works, it is assumed to

be known whether an image has an attribute or not. For practical
applications, it can be simply predicted by an attribute classifier such as
ResNet-18 (He et al., 2016), which can reach 92±2% accuracy for most
attributes. More carefully designed classifiers can also achieve higher
accuracy.

The generator 𝐺 follows a U-Net (Ronneberger et al., 2015) struc-
ture considering its success in semantic-level editing. Specifically, a
three-layer down-sample block is used to extract the feature map (C128,
W32, H32, ‘‘C’’ for channel, ‘‘W’’ for width, ‘‘H’’ for height) from the
 f

5

Fig. 7. Visual comparison on instance-level style transfer of Mouth Open.

Fig. 8. Visual comparison on instance-level style transfer of Wearing Lipstick.

input image 𝑥 (C3, W256, H256). For single attribute editing, 𝑦 is
1-dim vector, 𝑧 is a 16-dim vector. Both of them are first copied

o the spatial scale of the feature map (W32, H32) and are directly
oncatenated with the feature map at the channel-level (which means
he feature map shape is C128+1+16, W32, H32). Then it will go
hrough a six-layer residual block and a three-layer up-sampling block.
or the editing of 𝑘 attributes, the attribute label 𝑦 is a 𝑘-dim vector,
he style code 𝑧 is a 16𝑘-dim vector. The discriminator 𝐷 is designed as
PatchGAN (Zhu et al., 2017) network for better local discrimination
ith five down-sample layers.1

1 More detailed network architecture and more results related to the
ollowing section can be found in the supplementary material.
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Table 1
User study (higher is better) of style correctness and visual realism.

User study (%) Bangs Eyeglasses Smiling Mustache Mouth open Wearing lipstick Hair color Average

Style
correctness ↑

ELEGANT 11.2 15.1 12.6 21.2 28.4 24.7 23.6 19.5
GeoGAN 12.3 24.3 11.6 16.7 17.4 16.3 11.0 15.7
STD-GAN (ours) 76.5 60.6 75.8 62.1 54.2 59.0 65.4 64.8

Visual
realism ↑

ELEGANT 17.8 20.4 17.8 21.9 34.5 29.8 31.5 24.8
GeoGAN 8.2 18.1 14.6 12.8 14.0 9.1 2.9 11.4
STD-GAN (ours) 74.0 61.5 67.6 65.3 51.5 61.1 65.6 63.8
Fig. 9. Quantitative comparison between different methods.
Fig. 10. Visual comparison on multi-attribute style transfer, i.e. simultaneously transfer styles of Eyeglasses and Hair Color.
3.2. Comparisons on instance-level transfer

To investigate the effectiveness of our method, we compare it to
other methods. Existing studies of instance-level facial attribute transfer
are still preliminary. Some methods focus on specific attribute transfer,
but cannot handle general attribute transfer. In summary, there are
few existing methods for general attributes. We compare our method
to the state-of-the-art general attribute transfer methods, including
ELEGANT (Xiao et al., 2018b) and GeoGAN (Yin et al., 2019), in terms
of visual comparison, user study, and quantitative comparison.

3.2.1. Visual comparison
Firstly, we visually compare our method to existing methods in

Figs. 5–8 on various attributes. As can be seen, ELEGANT can gener-
ate images with the expected attribute, however, most styles are not
correctly transferred. Furthermore, GeoGAN achieves a much better at-
tribute style that benefits from the guidance of attribute segmentation.
However, a few results of GeoGAN look unrealistic, such as the Bang’s
6

color in Fig. 5 is different from the rest hair region since GeoGAN only
considers the shape of an attribute but neglects texture. In contrast,
our STD-GAN achieves more favorable style transfer with correct style
and high fidelity. Our method can even capture those subtle differences
between styles, e.g. bangs in Figs. 5(c) and 5(d) are both right bangs but
their width and height are slightly different according to their source
styles. This illustrates that our style encoder can precisely capture the
style information, and the generator can effectively transfer the style
given a style code.

3.2.2. User study
For a comprehensive comparison, we perform a user study for

human perception evaluation. Given a target image and a source im-
age, users are required to choose the best output image by different
methods. Two experiments are conducted. The first one is to evaluate
the style correctness, i.e. choose the transferred image that has the
most similar style as the source image. The second one is to choose the
transferred image that looks most realistic without seeing the source
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Fig. 11. Results of our STD-GAN on multiple types of attribute editing.
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mage. For each attribute, 300 edited images are randomly selected for
valuation, and each editing result is evaluated by 10 users.

As seen from the results in Table 1, ELEGANT has higher votes
han GeoGAN on average. But in some attributes, such as bangs and
yeglasses, GeoGAN is better than ELEGANT on style correctness. This
s because GeoGAN directly copies the attribute region from the source
mage to the target image, and thus it well preserves the style for some
ttributes but cannot ensure fidelity. However, ELEGANT generates the
arget image through the generation network instead of directly operat-
ng on pixels, so it can maintain visual reality. Beyond the expectation,
ore than 63% of the subjects choose our method as the best in

erms of both style correctness and visual realism, about 39% more
han ELEGANT and 49% than GeoGAN on average of all attributes.
or each different attribute, 51%∼76% of the subjects choose ours as
he best, especially on Bangs, Smiling, Mustache, and Hair Color. This
arge improvement clearly shows the effectiveness of our elaborately
esigned image style disentangling.

.2.3. Quantitative evaluation
We also quantitatively evaluate the attribute correctness and the fi-

elity of the transferred images. This experiment is conducted on 10000
andomly selected images from the testing set of CelebA. As the style
orrectness is impossible to evaluate quantitatively, we instead evaluate
he semantic attribute classification accuracy for a rough comparison.
pecifically, the attribute classification accuracy of generated images is
xamined via a ResNet-18 (He et al., 2016), which is trained as a binary
lassifier for each attribute on the CelebA training dataset. Besides, to
valuate the fidelity, Fréchet Inception Distance (FID) (Heusel et al.,
017) is employed to measure the similarity between generated images
nd real images.

Both results are shown in Fig. 9. For each attribute, both classifi-
ation accuracy and FID of our method is better than other methods.
n terms of attribute classification accuracy, our method achieves an
verage improvement of 16.5% for all attributes. The FID value is
educed by about 3.3 on average compared with the other methods
n various attributes. It demonstrates that the editing of our method is
ore realistic, which is consistent with the visual comparison and user

tudy.

.3. Multi-attribute transfer

To investigate the effectiveness of simultaneously transferring the
tyle of multiple attributes mentioned in Section 2.3, we compare our
odel to ELEGANT (Xiao et al., 2018b). GeoGAN (Yin et al., 2019) is
ot compared since it is not applicable for multi-attribute transfer. The
ulti-attribute transfer is challenging for all existing methods and some
7

ethods are even not applicable for multi-attribute transfer since the
nstance styles of multiple attributes are explosive. As shown in Fig. 10,
ur method can transfer the styles of the two attributes accurately, but
LEGANT is hard to transfer both attributes very wells. From this, we
nfer that our method has better attribute disentangling ability. This
ndicates that our STD-GAN can well decouple the styles of different
ttributes, which is quite hard but a crucial task in the multi-attribute
ransfer.

.4. Multiple types of editing

As discussed in Section 2.4, our model is also applicable for
emantic-level editing without any source image and style interpola-
ion. Fig. 11(a) shows the result of semantic-level attribute editing of
dding smiling without the source image. As in Eq. (16), we randomly
ample a style code 𝑧 from 𝑈𝑛𝑖𝑓 (−1, 1), and choose two dimensions
o change from −1 to +1. As can be seen from Fig. 11(a), the 4th
imension controls the degree of mouth opening while the 5th dimen-
ion controls the degree of stretching of the mouth. This phenomenon
emonstrates that different dimensions have a tendency to control
ifferent features of the style. Moreover, it should be noted that our
ethod is applicable for both semantic attribute editing and instance-

evel attribute style transfer, while ELEGANT (Xiao et al., 2018b) and
eoGAN (Yin et al., 2019) can only be used for instance-level attribute

tyle transfer. Fig. 11(b) shows style interpolation from four source
mages. The bilinearly interpolated style code is used to add eyeglasses
or the target image as in Eq. (17). Notice that the style code only
nfluences the attribute-related region, while other regions excluded the
ttribute is kept almost identical. These results show that our method is
apable of semantic-level attribute transfer and style interpolation with
single model.

.5. Ablation study

In the ablation study, we investigate the effect of the two steps
diting design and all constraints related to style transfer.

Firstly, we investigate the effect of the design of two steps transfer.
s a comparison, we use a single-step design, which directly transfers

he attribute to whether the target image has the attribute or not.
s shown in Fig. 12, the single-step design almost fails to transfer.
e guess this is caused by the explosive variations from the original

tyle to the given style. Concretely, taking 𝑛 styles for an attribute,
or example, the model of single-step design needs to fit 𝑛2 situations,
hile our model with two steps only needs to handle 2𝑛 situations
hich is much easier to obtain favorable results as shown in Fig. 12.
he comparison between the single-step design and two-steps design
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Fig. 12. Ablation study of two steps and one step design. The 3rd and 4th columns are results of two-step style transfer design, while the 5th column shows results of single-step
style transfer design.
Fig. 13. Visual ablation study of our STD-GAN on Bangs and Eyeglasses. Here, 𝑓𝑢𝑙𝑙 contains all part of our method. 𝑓𝑢𝑙𝑙 −𝑅𝐶, 𝑓𝑢𝑙𝑙 −𝑈𝑁 , 𝑓𝑢𝑙𝑙 −𝑀𝐼 , and 𝑓𝑢𝑙𝑙 −𝑈𝑁 −𝑀𝐼 mean
that the cycle reconstruction loss 𝑟𝑒𝑐 in Eq. (10), the uniform distribution adversarial training 𝑢𝑛𝑖𝑓 in Eq. (13), the mutual information loss 𝑚𝑖 in Eq. (9), and 𝑢𝑛𝑖𝑓 + 𝑚𝑖 are
removed from the full method respectively.
clearly demonstrates that our divide-and-conquer two-steps strategy is
reasonable and effective.

Secondly, we investigate the effect of all constraints related to
attribute style transfer, including: (1) the mutual information objective
𝑚𝑖 in Eq. (9), which makes the style code associated with the image
style; (2) the cycle reconstruction objective 𝑟𝑒𝑐 in Eq. (10); (3) the
adversarial training objective 𝑢𝑛𝑖𝑓 of uniform distribution in Eq. (13),
which aims for finer style encoding. The results are shown in Fig. 13.
As can be seen, the style correctness and the fidelity degrades after re-
moving each loss, illustrating the necessity of each part in our method.
Especially, as shown in Fig. 13(e), the style of the transferred image
becomes inaccurate obviously when the mutual information term and
the uniform distribution term are removed. It demonstrates that these
two terms play an important role in style transfer, and verifies the
effectiveness of the proposed Style Disentangling Module.

3.6. Failure cases and discussion

For most attributes, the editing requirements are compatible, which
is the premise of attribute editing task or instance-level facial attribute
transfer task. However, for some incompatible attributes such as adding
8

bangs to bald people, there is a conflict between the realism and source
attributes style preserving. Some failure cases caused by the conflict are
shown in Fig. 14, where bangs are added to people wearing a hat and
bald people. As can be seen, the edited result looks strange. Take adding
bangs to bald man for example, in terms of realism, bangs should
appear together with the hair, while in terms of correct transferring, the
hair should not appear. Subjectively, our method is inclined to correctly
retain the source attribute style and transfers the attribute ‘‘stiffly’’, and
thus makes the editing results look strange.

Considering this conflict, it would be user-friendly if there is a
way to control the balance between style accuracy and realism. This
kind of control can be achieved by adjusting the weight coefficient of
fidelity adversarial loss and style constraints during the training phase.
However, in the testing phase, for most existing methods including
ELEGANT (Xiao et al., 2018b), GeoGAN (Yin et al., 2019), and ours,
there is no explicit consideration of style accuracy and realism, which
makes it hard to control. In the future, we will investigate to establish
an explicit module to balance between these two aspects during the
generation process.
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&
-

Fig. 14. Failure cases of our method on conflicting attributes, i.e., adding bangs to
people wearing a hat and bald people.

4. Conclusion

In this work, we propose a novel Style Disentangling GAN (STD-
GAN) to achieve precise instance-level facial attribute transfer, with
only binary attribute annotations. The whole process consists of two
steps, including a removing step to remove the original attribute and
an adding step to add the attribute with another style. A style disentan-
gling module is elaborately designed to extract style information from
a source image. Our method is naturally extended to multi-attribute
instance-level transfer. Moreover, it also capable of semantic-level at-
tribute editing. Extensive experiments verify the effectiveness of our
method.
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A. Detailed Experimental Setup

The network architectures of our model in section
2 and 3 of the manuscript are shown in Figure 1 ∼ 3.
Here are some notations; N : the number of output
channels, K: kernel size, S: stride size, P : padding
size, n: the dimension of the style encoding (we set
n as 16 for all experiments).

For the generator G, layer normalization is used in
all layers except the final output layer. G consists of
three parts, including down-sampling layers, residual
bottleneck layers [1] and up-sampling layers. The at-
tribute label y and the style encoding z are inputted
between the down-sampling layers and residual lay-
ers. Following U-Net [2], skip connect structure is
adopted in order to keep more details of the original
image. The discriminator D is designed like as that in
PatchGAN [5] to enhance local discrimination. The
LeakyReLU with a negative slope of 0.2 is used. To
get better result of various styles, the back propaga-
tion of cycle reconstruction loss is recommended to be
truncated before going to the removing step, which
means only optimize the adding step, otherwise it
may influence the accuracy of style transfer, since G
has a tendency to sneak information of the original
style during the removing step. We clip output pixel
values into [−1, 1] during the testing phase. The res-
olution of all images in the experiment is 256 × 256.

B. Additional Visual Results

We show additional results on more attributes for
various tasks.

Fig 4 ∼ 6 show more visual comparing results of
our method with ELEGANT [3] and GeoGAN [4] on

smiling, hair color and eyeglasses similar to section
3.2 of the manuscript.

Fig 7 ∼ 13 show additional visual results of
instance-level attribute transfer of our method on
various attributes.

Fig 14 shows the comparing result of Bangs and
Smiling style transfer simultaneously similar to sec-
tion 3.3 of the manuscript.

Fig 15 shows the result of semantic-level editing of
hair color and style interpolation of bangs similar to
section 3.4 of the manuscript.

Fig 16 shows the visual result of style exchange of
two images, which is a challenging task. We achieve
it by firstly removing the attribute of both images,
then adding the attribute for them with exchanged
style encoding.
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Figure 1: Network architecture of the discriminator D and
the style encoder E.
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Figure 2: Network architecture of the uniform distribution
discriminator Dz .
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Figure 3: Network architecture of the generator G.
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Figure 4: Visual comparison on instance-level style transfer of Eyeglasses.
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Figure 5: Visual comparison on instance-level style transfer of Smiling.
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Figure 6: Visual comparison on instance-level style transfer of Hair Color.
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Figure 7: Additional results of our method on bangs style transfer.
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Figure 8: Additional results of our method on eyeglasses style transfer.
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Figure 9: Additional results of our method on smiling style transfer.
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Figure 10: Additional results of our method on mustache style transfer.
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Figure 11: Additional results of our method on mouth open style transfer.
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Figure 12: Additional results of our method on wearing lipstick style transfer.
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Figure 13: Additional results of our method on hair color style transfer.
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Figure 14: Visual comparison on multi-attribute style transfer, i.e. simultaneously transfer styles of Bangs and Smiling.
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Figure 16: Results of style exchange of our method on various attributes.
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