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Abstract. Hair editing is an essential but challenging task in portrait
editing considering the complex geometry and material of hair. Exist-
ing methods have achieved promising results by editing through a ref-
erence photo, user-painted mask, or guiding strokes. However, when a
user provides no reference photo or hardly paints a desirable mask, these
works fail to edit. Going a further step, we propose an efficiently con-
trollable method that can provide a set of sliding bars to do continu-
ous and fine hair editing. Meanwhile, it also naturally supports discrete
editing through a reference photo and user-painted mask. Specifically,
we propose a generative adversarial network with a multivariate Gaus-
sian disentangling module. Firstly, an encoder disentangles the hair’s
major attributes, including color, texture, and shape, to separate latent
representations. The latent representation of each attribute is modeled
as a standard multivariate Gaussian distribution, to make each dimen-
sion of an attribute be changed continuously and finely. Benefiting from
the Gaussian distribution, any manual editing including sliding a bar,
providing a reference photo, and painting a mask can be easily made,
which is flexible and friendly for users to interact with. Finally, with
changed latent representations, the decoder outputs a portrait with the
edited hair. Experiments show that our method can edit each attribute’s
dimension continuously and separately. Besides, when editing through
reference images and painted masks like existing methods, our method
achieves comparable results in terms of FID and visualization. Codes can
be found at https://github.com/XuyangGuo/CtrlHair.

Keywords: Controllable Editing, Hair Editing, Style Transfer, Style
Manipulation

1 Introduction

Hair consists of numerous, dedicated, and small strands, whose complex geom-
etry and material lead to various hair appearances in color, structure, shape,
style, etc. The complex nature of hair makes it difficult to model, depict and
generate. Hair editing, as a kind of image manipulation, is one of the most chal-
lenging and important components of portrait editing. The task of hair editing
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Fig. 1. Controllable hair editing by using CtrlHair. Given a portrait in the upper left
corner of each subfigure, CtrlHair can edit the hair by sliding a set of bars. CtrlHair
supports editing of fine-grained factors of an attribute simultaneously and separately

has valuable application scenarios, such as animation, games design, and virtual
reality, and can also help to better understand the generation of face images.

The development of Generative Adversarial Nets [6] has greatly boosted the
hairstyle transfer [2,24,21,28], i.e. transferring the hairstyle of a reference image
to a target image including shape, appearance, etc. These methods especially
MichiGAN [24] achieve impressive results, which divides the hair into attributes,
including appearance, structure, and shape, and then edits hair according to
painted mask, guiding strokes, or reference photos for better user controllability.
However, when a user has no reference photo or hardly paints a desirable mask,
these existing works fail to edit. Go a further step, our work endeavors to provide
an efficiently controllable hair editing method, named as CtrlHair, with which
a user can do arbitrary hair editing by simply sliding a set of control bars,
providing reference photos, or painting a mask. Besides, rather than transferring
or editing an entire attribute such as color, shape, texture, we want to explore
manipulating each dimension of an attribute for finer control, e.g., change the
direction of hair shape and the brightness of hair color, as shown in Fig. 1.

Specifically, we propose a GAN with a multivariate Gaussian disentangling
module. Firstly, an encoder disentangles the hair’s major attributes, including
color, texture, and shape, to separate latent representations, one for each at-
tribute. The latent representation of each attribute is modeled as a standard
multivariate Gaussian distribution, to make each dimension can be changed
continuously and finely. Benefiting from the Gaussian distribution, any man-
ual editing including sliding a bar, providing a reference photo, painting a mask
can be easily made, which is flexible for users to interact with. Finally, with
changed latent representations, a decoder outputs an image with edited hair.

Among all attributes, shape editing not only change the hair region but also
affects other parts of the portrait. To avoid the problem of tricky misalignment
between hair and face region and inpainting caused by shape change, we es-
pecially propose a novel Shape Adaptor module. The shape adaptor takes the
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changed hair shape, face mask, and background mask as input, and automat-
ically does alignment and inpainting to output an appropriate portrait mask
including hair region, face region, and background region.

Briefly, our contributions are summarized in three-folds:

1. We propose a GAN with multivariate Gaussian disentangling, with which a
user can do continuous and fine-grained hair editing by simply sliding a set
of control bars, providing reference photos, or painting a mask.

2. Especially, for a realistic portrait with edited hair, a learning-based shape
adaptor is proposed to automatically do alignment between hair and face
region, as well as inpaint those uncovered regions caused by shape change.

3. Experiments show that our method can edit each dimension of each attribute
continuously and separately. It also achieves comparable results as existing
methods on task of hairstyle transfer.

2 Related Works

Image Generation. In recent years, attributing to the development of Gen-
erative Adversarial Networks [6], the realism and resolution of image genera-
tion have been significantly improved. The early method DCGAN [20] intro-
duces a deconvolutional structure, which greatly improves realism. Progressive-
GAN [10] and StyleGANs [11,12] further propose a progressive generative net-
work to achieve photo-realistic face images in high resolution. In addition, an-
other kind of work focuses on conditional generation with supervised or unsuper-
vised condition. The supervised conditional GAN methods, such as CGAN [15]
and ACGAN [16], are trained with a label as a conditional signal to generate an
image belonging to the condition-indicated class. Moreover, InfoGAN [3] learns
disentangled representations in an unsupervised manner, by maximizing mu-
tual information between conditional signal and generated images. Furthermore,
conditional image generation is widely explored for different types of tasks, e.g.,
style transferring [9], generating images from segmentation masks [18], etc.

Face Editing. The above methods can generate images, but cannot edit a
given image. So, there appear a few works using GAN to do image editing,
especially face editing. Given an input image, these methods aim to generate
an image where only one or several attributes are edited while the rest con-
tents keep unchanged. Most face editing methods [19,22,4,27,14,7,5,17,23] ma-
nipulate specific face attributes by using binary attribute labels (e.g., with or
without glasses/smiling). However, editing with binary attribute labels can only
do coarsely editing. So, some works such as MaskGAN [13] are proposed to use
facial segmentation masks to edit the face more flexibly and meticulously. This
method can edit the shape or transfer the appearance style of the entire image.
Different from encoding the appearance style of an image into one feature rep-
resentation in MaskGAN [13], SEAN [29] further disentangles the appearance
style of the entire image to multiple separate feature representations according
to the segmentation masks, allowing more flexible editing.
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Hair Editing. Among all face parts, hair has complex structures, shapes, ap-
pearances, etc, leading to many semantics and making fine annotations lacking.
Hence, the general face editing methods mentioned above are hardly used for hair
editing with meaningful semantic variation. So there are some works [2,24,21,28]
that are specially dedicated to editing hair especially. Since hair is hardly labeled
by discrete category for training like face editing, existing methods directly trans-
fer the hair of a reference image to another. Chai et al. [2] and LOHO [21] disen-
tangle the attributes of hair into two parts, including shape-relevant attributes
and shape-irrelevant attributes, which can be separately transferred from a ref-
erence image to another image. Moreover, MichiGAN [24] and Barbershop [28]
further disentangle hair into three orthogonal attributes, including shape, struc-
ture, and appearance, and users can edit these attributes by providing reference
images, painted masks, or guiding strokes. Overall, these methods can edit or
transfer the hairstyle by reference photos or painted masks as conditions. How-
ever, when a user has no reference photos or hardly paints a desirable mask,
these works fail to edit. That is what our work attempt to deal with.

3 CtrlHair

Given an input portrait I, our CtrlHair attempts to edit the attributes of hair
region continuously and finely. The overall editing process is as follows:

(X,S) = Φ(I), (X̂, Ŝ) = CtrlHair(X,S), Î = Ψ(X̂, Ŝ, I), (1)

where Φ parses the input portrait I to get a segmentation mask S, including hair
mask SH , face mask SF and background mask SB , i.e. S = (SH , SF , SB). X can
be just the hair region of the original I or can be a basic feature of hair for a
better feature presentation. Ψ blends the edited hair region and other regions
including face and background to a portrait Î. Since our work mainly focuses
on the hair editing, Φ and Ψ are directly obtained by using a pre-trained model,
i.e. pre-trained BiSeNet [25,30] is used to obtain portrait segmentation mask S
and SEAN [29] is used to obtain basic feature representation X and generate
portrait with edited hair X̂ and Ŝ.

As stated above, the main goal of our method is to edit hair continuously and
finely. Continuous editing means that users can edit a given hair to any other
rational look, or a look specified by a reference photo and user-painted mask.
Fine editing means that users can separately edit fine-grained variation factor
of a hair attribute, such as length of shape, hue of color, etc. Besides, the edited
hair region should be harmoniously blended with other regions including face
and background to generate a realistic portrait.

For this goal, we propose a generative adversarial network with a multivariate
Gaussian disentangling module. The proposed method consists of three succes-
sive modules, i.e. encoding module, interactive editing module, and decoding
module as shown in Fig. 2. We first introduce the three modules in the editing
procedure of CtrlHair, and then presents the training objectives in detail.
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Fig. 2. An overview of CtrlHair, which consists of three modules: encoding, interac-
tive editing, and decoding. The encoding module separates hair into distinct latent
representations, of which each is formulated as a standard multivariate Gaussian dis-
tribution. In the interactive editing module, any manual editing including a set of bars,
reference images, painted masks, can be made. The decoding module outputs an edited
portrait with these edited latent representations

3.1 The Editing Procedure

Encoding Module. The encoding module aims at disentangling the hair into
three latent representations, corresponding to color, texture, and shape. These
latent representations are respectively obtained by three encoders as below:

ZC = EC(X), ZT = ET (X), ZS = ES(SH), (2)

where ZC , ZT , ZS ∈ N (0, I) represent the disentangled representation of color,
texture, and shape. EC , ET and ES are corresponding encoders. For each at-
tribute, expectedly it can be edited to any other look continuously and finely.
Therefore, the representation of ZC , ZT and ZS are all restricted to follow stan-
dard multivariate Gaussian distribution during training. Benefiting from the
continuity of Gaussian distribution, any editing can be made by directly chang-
ing the value of ZC , ZT , and ZS . Besides, all dimensions of standard multivariate
Gaussian distribution are mutually independent, which makes that each dimen-
sion of an attribute can be separately edited for fine editing, such as length of
shape, hue of color, etc. The meaning of each dimension of an attribute can be
learned without supervision to implicitly mine variational factors (e.g. smooth-
ness of texture), and can be also supervised by labels to explicitly learn meaning
factors (e.g. brightness of color).

Interactive Editing Module. Given the disentangled latent representation
ZC , ZT and ZS , users can easily edit each dimension of each attribute, simply by
sliding a set of bars, and get edited latent representation ẐC , ẐT and ẐS . Besides,
it also naturally supports users to edit according to reference photos or painted
masks like existing methods [24,21,28] by inputting them to the encoders to



6 X. Guo et al.

get their latent representation. These processes can be illustrated as one unified
interactive operation as below:

(ZC , ZT , ZS)
fsliding bars; freferences; fpainted mask−−−−−−−−−−−−−−−−−−−−−−−→ (ẐC , ẐT , ẐS). (3)

Decoding Module. The decoding module aims at generating an edited image
based on the modified latent representation. The appearance feature and shape
of hair are generated respectively. Color and texture are both related to the
appearance of hair, so they are decoded together via a single decoder as:

X̂ = DX(ẐC , ẐT ), (4)

where DX is the decoder for color and texture.
Similarly, the shape of hair can be also decoded from ZS like appearance in

Eq.(4). However, different from color and texture, shape editing not only changes
hair region but also affects the face and background region. On one hand, the
edited shape should be well aligned with the face region in appropriate scale and
width, e.g. a thin face with a large-shaped hair looks unrealistic. On the other
hand, shape change would uncover some regions that are originally covered by
hair. These regions should be inpainted as face or background. Existing methods
ignore these two problems, or just throw them to GAN, leading to awkward
portrait or inaccurate hair shape compared with the reference image. Therefore,
we specifically propose a learning-based shape adaptor Γ to obtain a well-aligned
hair shape and well-inpainted portrait mask as below:

Ŝ = Γ (ẐS , SF , SB). (5)

In the portrait mask Ŝ, the hair shape is slightly adjusted, and the background
mask and face mask are inpainted if they are uncovered after changing hair
shape, to ensure a harmonious and realistic portrait image generated by Eq.(1).

3.2 The Training Objectives

Expectedly, the generated image from the whole editing process in Eq.(1) should
satisfy three requirements, i.e. the edited image Î should look realistic; the hair
of Î is correctly edited; continuous and fine editing is supported. These three
characteristics are formulated as three types of objectives including realism loss
Lreal, reconstruction loss Lrec and distribution loss Ldist as follows:

L = λrealLreal +
∑

k∈{C,T,S}
(λrec

k Lrec
k + λdist

k Ldist
k ). (6)

Firstly, the generated image should be realistic. Since the Φ and Ψ are pre-
trained, we only need to ensure the generated X̂ and Ŝ same as those from the
real images. So, a realism adversarial loss Lreal, i.e., the first term in Eq.(6),
is optimized by adversarial training between generated (X̂, Ŝ) and (X,S) from
real images, same as the adversarial training in conventional GANs. Secondly,
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the editing should be correct, i.e. the generated image Î should be with the
edited attributes while other attributes remain unchanged. These are achieved
by the reconstruction loss Lrec, i.e. the second term in Eq.(6). Thirdly, the rep-
resentation ZC , ZT , ZS are expected to follow a standard multivariate Gaussian
distribution for continuous and fine editing, which is formulated by distribution
loss Ldist, i.e., the third term in Eq.(6).

The reconstruction loss and distribution loss of each attribute are different
respecting to their distinct natures, which are introduced respectively as follows.

Color. For color, the latent representation ZC ∈ R4 is designed as a 4-dimensional
vector. The first 3 dimensions represent the HSV color values, which capture the
mean color of the hair region. The 4th dimension represents the variance consid-
ering the color of all pixels in a hair region is not identical but usually different.
The reconstruction loss and distribution loss of color are formulated as below:

min
EC

Ldist
C = E(X,Z̃C)∼Pd

∥∥∥EC(X)− Z̃C

∥∥∥2
2
, Z̃C ∼ N (0, I) (7)

min
DX

Lrec
C = EẐC ,ẐT∼N (0,I)

∥∥∥EC(X̂)− ẐC

∥∥∥2
2
. (8)

where Pd is the training set. Eq.(7) ensures that the latent representation gener-
ated from real images follows gaussian distribution through a supervised manner.
Since H, S, V, and variance of the hair region can be easily calculated without
manual labeling, they are used as the supervised color label. Specifically, the
distribution of (H, S, V, variance) of hair region from training images is trans-
formed to standard Gaussian distribution dimension-wisely, achieved by analyt-
ically mapping the quantiles of the cumulative distribution of training samples
to standard Gaussian distribution, denoted as Z̃C . Then Eq.(7) enforces the en-
coded latent representation to be the same as its supervised label Z̃C , i.e. enforce
ZC = EC(X) follow standard multivariate Gaussian distribution.

Eq.(8) ensures that each ẐC sampled from N (0, I) can correctly manipulate
the generated hair feature X̂ via reconstruction between the sampled ẐC and
encoded EC(X̂) from generated feature with it.

Besides color, any other supervised attributes can be easily added similarly.

Texture. The texture attribute captures the pattern and regularity of the hair,
such as hair-strand thickness, smoothness, curliness, etc. These semantics are
difficult to label manually, so we use unsupervised methods to discover them.

On one hand, the low dimensional latent representation ZT should be capable
of manipulating the image, formulated as two reconstruction loss as follows:

min
ET ,DX

Lrec
T =EX∼Pd

∥X −DX(EC(X), ET (X))∥22 (9)

+EẐC ,ẐT∼N (0,I)

∥∥∥ET (X̂)− ẐT

∥∥∥2
2
. (10)
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Fig. 3. The design of shape editing. The shape adaptor takes latent representation ẐS

of edited hair shape, original face and background mask SF , SB as input; then adjusts
them to obtain an edited portrait mask, whose hair region, inpainting region, and the
rest face and background region are constrained accordingly

The reconstruction in Eq.(10) maximizes the mutual information [3] between
ẐT and X̂, which ensures each dimension of ẐT can manipulate some kind of
variation in X̂. The reconstruction in Eq.(9) enforces ET (X) to try to capture a
meaningful variation of texture rather than other attributes or a trivial solution.

On the other hand, ZT should follow standard multivariate Gaussian distri-
bution. This is partly achieved by reconstructing sampled ẐT in above Eq.(10).
Besides, an auxiliary constraint is used to directly enforce the low-order mo-
ments of ẐT to be same as that of standard Gaussian distribution. Here, one-
and second-order moments (i.e. µ = 0, and Σ = I) are adopted, formulated as:

min
ET ,DX

Ldist
T = ∥EX∼Pd

ET (X)− µ∥22 + ∥VX∼Pd
ET (X)−Σ∥2F . (11)

Shape. Shape is a complex attribute since shape not only changes the hair
region but also affects the face and background region. Therefore, the shape
editing should be not only correct but also reasonable, i.e. hair shape should be
well aligned with the face region and the uncovered region should be inptained
reasonably. Hence, a shape adaptor Γ is proposed to simultaneously adjust the
shape to align with the face and also inpaint those uncovered regions.

To achieve it, during training, we conduct constraints by sampling a person’s
hair mask SH ∈ {0, 1}H×W×1, and adapt it to another person with his face mask
and background mask (SF , SB) ∈ {0, 1}H×W×2. The objective loss is calculated
on the entire generated portrait mask Ŝ instead of only on the hair region.
As shown in Fig. 3, the shape adaptor takes edited shape representation ẐS ,
face and background mask (SF , SB) as input, and then generates the pseudo
depth-map of hair, face, and background, denoted as dH , dF , dB ∈ RH×W×1.
The pseudo depth-maps allow easy and soft composition [1] of them to get the

adjusted portrait mask Ŝk = exp(dk)∑
m∈{H,F,B} exp(dm) (k ∈ {H,F,B}).
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Table 1. Functionality comparison of different methods

Functionality MichiGAN [24] LOHO [21] BarberShop [28] CtrlHair (ours)

Interaction Mode references
painted mask

sketch

references references
painted mask

references
painted mask
sliding bars

Editing Flexiblity coarse, discrete fine-grained, continuous

Shape Editing replace directly shape adaptor

The shape reconstruction loss is calculated on the adjusted portrait mask Ŝ
from the shape adaptor as below:

min
ES ,Γ

Lrec
S = −ESH ,SF ,SB∼Pd

[
SH log(ŜH) + (1− SH)

∑
k∈{F,B}

Sk log(Ŝk) (12)

+ (1− SH) log(1− ŜH)

]
, (13)

where the first term in Eq.(12) enforces that the generated hair shape should
be almost the same as the input while allowing slightly adjustment for different
(SF , SB) guided by adversarial realism loss Lreal. The second term in Eq.(12)
ensures that the unaffected face and background region remain unchanged. The
unconvered region is determined automatically via adversarial realism loss Lreal,
but with an extra constraint in Eq.(13) to prohibit being inpainted as hair again.

Besides, the distribution loss Ldist
S is designed as adversarial loss between the

distribution of generated latent representation and Gaussian distribution:

min
ES

max
δ

Ldist
S = ESH∼Pd

[log(1− δ(ES(SH))] + EZr
S∼N (0,I)[log δ(Z

r
S)], (14)

where δ is the corresponding discriminator for adversarial training. The distri-
bution loss can also be designed similarly to the texture. They are enforced
differently according to each attribute’s characteristics for better results.

Summary. The parameters of the whole network including EC , ET , ES , DF ,
and Γ are optimized by minimizing the above three types of objectives, i.e.,
realism loss, reconstruction loss, and distribution loss. More details can be found
in the supplementary material.

3.3 Discussion

Overall, CtrlHair has three differences with existing methods as shown in Table 1.
Firstly, CtrlHair supports more interaction modes including reference photos,
painted masks and sliding a set of bars. Secondly, CtrlHair can continuously and
finely manipulate hair attributes such as hue of color, length of shape, while
existing methods can only transfer the entire attribute. Thirdly, we elaberately
consider the alignment between hair and face, and inpainting of those uncovered
regions, while existing methods directly ignore or throw them to GAN.
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4 Experiments

In this section, we present the experimental setting, then compare our CtrlHair
method with existing methods in terms of hairstyle transfer, and investigate the
ability of continuously and finely editing followed by an ablation study.

4.1 Datasets and Implementation Details

For experimental evaluation, the high-quality CelebAMask-HQ [13] dataset and
FFHQ [11] dataset are used. From the two datasets, we select 10413 images
without severe hat-occlusion and large pose orientation for experiments. Among
them, 1000 are randomly sampled for testing and the rest 9413 images are used
for training. The resolution of each image is resized to 256× 256.

The encoder of color EC , encoder of texture ET and decoder for both of
them DX are all designed as fully connection architecture while shape encoder
ES and shape adaptor Γ are designed as convolution architecture considering
that shape is position sensitive. The dimensionality of latent representations
ZC , ZT , ZS are set as 4, 8 and 16 respectively. For texture attribute, besides
unsupervised mining, we also manually annotate a small number of images (1180
for wavy, and 727 for straightness) with a binary label for curliness factor to do
weakly supervised training. In total, we edit 3 attributes with 28 controllable
dimensions. Among them, 11 fine-grained dimensions are manually found to be
with obvious semantics, which are shown in the supplementary materials.

4.2 Comparison with existing methods on hairstyle transfer

Since existing methods can not do continuous hair editing, we firstly compare
with them on the task of discretely hair editing, i.e. hairstyle transfer. Our Ctrl-
Hair method is compared to MichiGAN [24], LOHO [21], and Barbershop [28], in
terms of editing correctness, realism, and computational efficiency. Among them,
MichiGAN needs an additional inpainting module for uncovered region, but this
part is not publicly available, so we use GatedConv [26] for its inpainting.

Editing Correctness. The editing results of the compared methods are
shown in Fig. 4, where all methods transfer the appearance of a reference photo
and its corresponding shape to a given input image. Firstly, we compare the
results of hair-appearance transferring as shown in Fig. 4(a), (b), and (c). As for
the hair region, all methods transfer the hair appearance favorably, i.e. look very
similar to the reference image. As for the appearance harmony of hair and face
region, MichiGAN looks slightly stiff, LOHO, BarberShop and our CtrlHar look
naturally. Secondly, we compare the results of hair-shape transferring. As can
be seen in Fig. 4(d), when the reference’s face shape is larger, it is inappropriate
to directly replace the shape mask of the input image with the reference mask,
e.g. artifact appears in MichiGAN and shadow appears on the left side of the
face in LOHO, due to a lack of considering alignment. Both BarberShop and
our CtrlHair achieve better results. In Fig. 4(e) and (f), MichiGAN and LOHO
incorrectly inpaint the uncovered region, i.e. the uncovered region is inpainted
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Mask Reference Input MichiGAN LOHO BarberShop Ours

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 4. Comparison with existing methods on hairstyle transfer with a reference image

Table 2. Comparison with the existing method in terms of realism and time efficiency

MichiGAN [24] LOHO [21] BarberShop [28] CtrlHair (ours)

FID↓ 23.80 31.03 24.93 21.39
Time Consuming↓ 1.6s+3.1s1 960.1s 395.8s 7.7s

with hair again while it should be inpainted with face or background. Our method
produces more correct shape, benefiting from our elaborately designed shape
adaptor. Please refer to the supplementary material for more comparison results.

Realism Comparison. To evaluate the generation realism, we compare
the Fréchet Inception Distance (FID) [8] from different methods according to
the same 3000 transferred images selected randomly. FID judges the similarity
between edited images and real images. The results in Table 2 show that our
method produces a lower FID than others, meaning a slightly better realism.

Time Consuming Comparison. The time consuming of inference on a
single NVIDIA RTX is evaluated as shown in Table 2. Both LOHO and Bar-
berShop need several minutes since they are optimization-based methods. As
learning-based methods, both MichiGAN and our method only need several sec-
onds, making them friendly for real-time interaction with users’ manipulation.

1 Since face parsing and inpainting processes are not publicly available for MichiGAN,
BiSeNet [25] and GatedConv [26] are alternatively used, which cost 3.1s.
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Fig. 5. Continuous hair editing at each dimension of an attribute via sliding a bar

Fig. 6. A wide variety of hair is obtained continuously for the person in the red box

4.3 Ability of Continuous Editing

The major contribution of our method is continuous and fine editing of hair.
Fig. 1 shows some results of editing multiple attributes via sliding bars, and
Fig. 5 further shows results of editing fine-grained variational factors of each
attribute with no need of any reference image. These visual results show that
our CtrlHair can correctly and separately edit the hair, i.e. correctly edit the
desirable attribute while not affect other hair attributes or face region, in a con-
tinuous manner. Based on this capability, a wide variety of hair can be obtained
continuously in Fig. 6, and continuous editing towards a target style indicated
by a reference image can be naturally obtained as shown in Fig. 7.

Moreover, we quantitatively verify the ability of continuous editing of our
method with results shown in Fig. 8. We take three attributes for examplar,
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Input
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Fig. 7. Continuous editing towards a target style indicated by a reference image

value of representation

statistics of saturation

(a) Saturation of Color

value of representation

statistics of length

(b) Length of Shape

value of representation

statistics of volume

(c) Volume of Shape

Fig. 8. Illustration of continuous hair editing via quantitative curve for three attributes.
Each curve shows attribute value of edited image w.r.t. the latent representation value

including saturation of color, volume of shape, and length of shape since the real
value of these attributes are easily calculated as ground-truth for analysis. We
continuously change the value of the latent representation (i.e. horizontal axis),
such as saturation of color. Then, portrait images are generated with these latent
representations. After that, the values corresponding to the manipulated factor
in the generated image are calculated as values in the vertical axis, such as
the real saturation of hair region of generated image. Each curve in Fig. 8 is
plotted according to 100 sampling points during the interval [−3σ, 3σ]. Each
point is calculated as an average 900 images with standard variance shown as
blue region around the curve. As can be seen, the latent representation affects
the attributes continuously and smoothly, validating the ability of our CtrlHair.

Please refer to the supplementary material for more results, more description
of the values in Fig. 8, and editing demos with a user interface.

4.4 Ablation Study

In this section, we verify the effectiveness of standard multivariate Gaussian
distribution, and necessity of shape adaptor.

Effectiveness of Gaussian Distribution. To evaluate how the standard
multivariate Gaussian distribution affects the control of editing, we compare
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Fig. 9. Ablation Study of the constraints of standard multivariate Gaussian distribu-
tion and shape adaptor.

the hair editing results with and without it by randomly sampling texture and
shape latent representations from Gaussian distribution. The results are shown
in Fig. 9(a). It can be seen that, without Gaussian distribution, changing the
latent representation can only slightly change the texture and shape since the
hairs attributes are mapped to an expansive space, making them hardly be
sampled. When with standard multivariate Gaussian distribution, changing the
latent representation can traverse a reasonable range with rich variations.

Necessity of Shape Adaptor. We investigate our CtrlHair method with
and without shape adaptor, i.e. directly replace the hair mask of an input image
with that of the reference image. The results are shown in Fig. 9(b). It can be
clearly seen that, in the edited images without using the shape adaptor, a large-
shaped hair and a thin face does not match well, leading to awkward results. This
comparison demonstrates the necessity and effectiveness of our shape adaptor.

5 Conclusion and Future Work

In this work, we propose an efficiently controllable editing method for hair, which
can provide a set of bars for users to simply slide it to do continuous and fine
hair editing. The proposed method also naturally supports editing with reference
photos and user-painted mask. The method is designed as an encoding-editing-
decoding framework, where the latent representations for each attribute of hair
are formulated as standard multivariate Gaussian distribution supporting for
continuous and fine editing. In this work, most variational factors of attributes
are mined unsupervised, which does not necessarily correspond to a meaning
semantic. In the future, we will explore disentangling them according to the
intrinsic semantic of hair attributes.
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search and Development Program of China (No. 2017YFA0700800), the Natural
Science Foundation of China (No. 62122074), and the Beijing Nova Program
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This supplementary material provides more details in six aspects: Section A gives
more details about network architectures and the training procedure. Section B
gives more details about how to automatically get color annotations. Section C
presents details about exploring binary (i.e. weak) annotation to guide the se-
mantic dimension disentangling for texture. Section D discusses the comparison
between our method and other general GAN inversion-based editing methods.
Section E shows details about testing of continuous editing ability. Section F
shows more results about the disentangled dimension of color, texture, and
shape, more comparisons with existing methods, and more visual results.

A Network Architectures and Training Procedure

Network Architectures for Hair Color and Texture Editing. The net-
works of color and texture have two parts, encoders (EC , ET ) and decoder (DX).

The encoder EC of color is designed as a fully connection architecture with
3 hidden layers, as shown in Fig. 1. It takes hair feature X as input to get
the latent representations ZC . The encoder ET of texture is designed as a fully
connection architecture with 4 hidden layers, as shown in Fig. 2. It takes hair
feature X as input to get the latent representations ZT . A single decoder DX

is used to generate the edited hair feature X̂ from edited latent representations
ẐC , ẐT of color and texture. The network architecture of the decoder DX has 4
hidden layers, as shown in Fig. 3.

During optimization of the encoder and decoder, adversarial training with
Lreal is needed to ensure the reality of edited feature X̂. So, a discriminator δX
is introduced as described in Section 3.2 of our paper. The discriminator has a
similar architecture with ET and shares network weights as shown in Fig. 2 for
saving parameters and better extracting common features.

Network Architecture for Hair Shape Editing. The networks for the shape
editing are designed as convolution architecture considering that shape is posi-
tion sensitive, consisting of the shape encoder and the shape adaptor. Since the
input segmentation mask has no position information for convolution operation,

https://orcid.org/0000-0001-5663-7957
https://orcid.org/0000-0001-9483-875X
https://orcid.org/0000-0002-8569-1079
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Algorithm 1: Training of CtrlHair

input : Images set ΩI = {I} with its hair appearance features ΩX = {X},
color label ΩZ̃C

= {Z̃C} and portrait masks ΩS = {S};
output: Encoders EC , ET , ES , decoders DX and shape adaptor Γ ;

1 Initialize EC , ET , ES , DX , Γ and discriminators δX , δS , δZS ;
2 while not converge do

// training encoders and decoder for color and texture

3 Sample a batch of latent representations ẐC , ẐT ∈ N (0, I);

4 Generate X̂ using Eq. (4);
5 Sample a batch of appearance features X ∈ ΩX with its color labels

Z̃C ∈ ΩZ̃C
;

6 Update EC according to Ldist
C , ET according to Lreal,Lrec

T ,Ldist
T , and DX

according to Lreal,Lrec
C ,Lrec

T ,Ldist
T ;

// training encoder and adaptor for shape

7 Sample a batch of masks from ΩS and extract their hair masks SH ;
8 Sample another batch of masks from ΩS and extract their face and

background masks (SF , SB);

9 Generate adjusted portrait mask Ŝk from SH , SF , SB using Eq. (2) and (5);

10 Update ES according to Lreal,Lrec
S ,Ldist

S , and Γ according to Lreal,Lrec
S ;

// training discriminators

11 Sample a batch of true appearance feature Xr ∈ ΩX , portrait mask
Sr ∈ ΩS and true latent representations Zr

S ∈ N (0, I);
12 Update δX , δS , δZS according to their respective adversarial training losses;

13 end

inspired by NeRF [6], 1st ∼ 10th order sine and cosine position embeddings are
additionally concatenated for each input segmentation mask.

The shape encoder ES takes the above-mentioned input to obtain the shape
latent representation ZS , and the encoder’s network architecture is shown in
Fig. 4. Then, the shape adaptor Γ takes latent representation ẐS of edited shape,
face mask SF , and background mask SB as input, to generate edited portrait
mask Ŝ. The shape adaptor Γ ’s network architecture is as shown in Fig. 7.

During training, adversarial training is employed to ensure the reality of
edited portrait mask Ŝ by Lreal and the standard multivariate gaussian distri-
bution of encoded shape latent representation ZS by Ldist

S . So two discriminators
δS and δZS

are designed. The network architectures are shown in Fig. 5 and 6.

Training Details. We use Adam optimizer [5]. The batch size is set as 16. For
loss weights, we set λreal = 1, λrec

C = λdist
C = 10−2, λrec

T = 102, λdist
T = 10−2,

λrec
S = 102, λdist

S = 1. For all encoders, decoders, and the shape adaptor, the
learning rate is set as 2 × 10−4. For all discriminators, the learning rate is set
as 1× 10−4. The training procedure is shown in Algorithm 1. To achieve better
results, the shape branch can also be trained separately, i.e., separating the steps
related to shape editing for better controlling the network parameters.
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Fig. 8. The scatter plot of hair pixels for each image

B Details about Automatic Hair Color Annotation

In Section 3.2 of our paper, we briefly describe that the latent representation of
hair color is designed as a 4-dimensional vector ZC , indicating the major HSV
values and color variance. They are automatically calculated as below, with no
need for manual labeling.

For HSV color values, as denoted in our paper, the mean of pixels in the hair
region is used. Besides mean, we also try median and mode, but their effects
are slightly worse than the mean. For color variance, we observe that for most
images, all pixels of hair region are roughly distributed on a one-dimensional
manifold in RGB space for a single portrait as shown in Fig. 8. Based on this
observation, for each image, we employ PCA to calculate its first principal com-
ponent (containing about 97.0% energy of hair color pixels on average) and take
the variance corresponding to the first principal component as the color variance.

C Details about Hair Texture Editing guided by Binary
Annotation

As denoted in Section 3.2 of our paper, unsupervised training of hair texture dis-
entangling and editing is able to achieve continuous and fine editing of different
dimensions of the texture. However, each dimension of the learned latent repre-
sentation ZT does not necessarily correspond to an explicit semantic meaning.
This is because the texture hardly obtains continuous label for supervised train-
ing, which is quite different from the color that is easy to obtain a continuous
label.

However, sometimes binary annotation (which is discrete and weak) can be
obtained, such as wavy or straight. With this kind of weak label, our method
is also easily compatible for better editing by introducing an additional binary
classification loss like that in [4], detailed in the following.

Taking the curliness factor as an example, a small number of samples are
binarily labeled, including 1180 images labeled as wavy and 727 images labeled
as straight. Specifically, one dimension in the texture latent representation ZT is
used to represent curliness, denoted as Zcur

T , and the rest 7 dimensions of ZT re-
main unchanged, i.e. still in an unsupervised manner. In addition to adopting the
constraints indicated in Eq. (9), (10), (11) of our paper for texture, additionally,
a binary classification loss is introduced for curliness.
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Firstly, a binary label Ŷ is assigned for the edited latent representation Ẑcur
T ,

i.e. Ŷ = I(Ẑcur
T ⩾ 0). Then, the decoded feature X̂ is input to a pre-trained

binary classifier P to get its prediction. After that, the classification loss between
the estimated prediction and the binary label is calculated as follows:

min
DX

Lrec
T,cur = EẐC ,ẐT∼N (0,I)

[
−Ŷ logP (X̂)

]
, (1)

where P is the pre-trained binary classifier for curliness Y from the hair feature
X trained by using truly labeled data. This loss can enforce that the change of
latent representation is consistent with the binary label, which roughly guides
the learning of continuous editing ability for curliness.

D Comparison with GAN Inversion-based Editing
Methods

General GAN inversion-based editing methods, such as [1,2,3,7], also have the
ability of continuous editing of portrait images and show compelling results.
However, these methods are not quite the same as ours in terms of tasks. Usually
for hair editing, only those editing that can manipulate the semantic variation of
hair such as hair shape, structure, etc., are considered meaningful. The general
GAN inversion-based editing methods can only achieve continuous editing, but
not meaningful editing. BarberShop [10] and LOHO [8], also as GAN inversion-
based methods, are designed specifically for hair, which is meaningful but loses
continuity as discussed in the text of our paper. In one word, on premising
meaningful editing, our method is continuous while existing methods are not.

E Details about Testing of Continuous Editing Ability

In section 4.3 and Fig. 8 of our paper, we test the ability of continuous editing,
specifically, taking saturation of color, length of shape, and volume of shape as
three examples. In testing, rough true values of the three attributes are used
as criteria for evaluation. Here we introduce how these values are calculated in
detail.

Saturation of Color : The mean of the saturation of all pixels in the hair
region is directly used to represent the saturation of hair color.

Length of Shape: The length is mainly reflected in the vertical distance of
the hair shape. In order to estimate the length and avoid being too sensitive
to outliers, we use the standard deviation of the vertical axis coordinates of all
pixels in hair region to reflect the length of hair, i.e. the larger the deviation is,
the longer the hair is.

Volume of Shape: The hair volume reflects the amount of hair, which is
reflected by the ratio of hair area and the whole image to roughly approximate
hair volume.

The calculation of the three criteria is not exactly the same as the ground
truth, but it is certainly proportional to the ground truth. So the relationship
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Table 1. Summary of attributes and fine-grained factors of our method

Attributes Color Texture Shape

Dimensions 4 8 16

Fine-grained Factors

Hue
Saturation
Brightness
Variance

Curliness
Smoothness

Hair-strand-thickness

Length
Volume
Bangs

Direction

between the above criteria and the corresponding latent representation in Fig. 8
of our paper can show whether continuous editing ability is correctly achieved.

F More Visual Results

In total, our method can edit 3 attributes (i.e. color, texture, and shape) of hair,
with 28 controllable dimensions. Among them, 11 dimensions are observed to
be with obvious semantics as shown in Table 1. Besides, more visual results are
shown for a better understanding of our method.

Fig. 9 shows a group of editing examples by using CtrlHair’s Demo. These
results illustrate that our method is convenient and friendly for user interaction
by sliding bars.

Fig. 10 shows more comparison results with existing methods on hairstyle
transfer with a reference image. From the figure, the effect of our method on
color and texture is comparable to other methods. While our method is obviously
superior to MichiGAN [9] and LOHO [8] in shape transferring.

Fig. 11 shows more editing of fine factors of all attributes simultaneously and
separately from our CtrlHair. Fig. 12∼22 show more editing results of each fine
factor of attributes. These figures illustrate the ability of fine and continuous
editing of our method.

Finally, Fig. 23 shows the result of hair editing with a wide variety for a given
person, which illustrates the arbitrariness of style achieved by our method.

References

1. Abdal, R., Qin, Y., Wonka, P.: Image2stylegan: How to embed images into the
stylegan latent space? In: IEEE/CVF International Conference on Computer Vi-
sion (ICCV) (2019)

2. Abdal, R., Qin, Y., Wonka, P.: Image2stylegan++: How to edit the embedded
images? In: IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (2020)

3. Alaluf, Y., Patashnik, O., Cohen-Or, D.: Restyle: A residual-based stylegan encoder
via iterative refinement. In: IEEE/CVF International Conference on Computer
Vision (ICCV) (2021)

4. Kaneko, T., Hiramatsu, K., Kashino, K.: Generative adversarial image synthesis
with decision tree latent controller. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2018)



8 X. Guo et al.

5. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

6. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: Nerf: Representing scenes as neural radiance fields for view synthesis. In: Eu-
ropean Conference on Computer Vision (ECCV) (2020)

7. Richardson, E., Alaluf, Y., Patashnik, O., Nitzan, Y., Azar, Y., Shapiro, S., Cohen-
Or, D.: Encoding in style: a stylegan encoder for image-to-image translation. In:
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(2021)

8. Saha, R., Duke, B., Shkurti, F., Taylor, G.W., Aarabi, P.: Loho: Latent optimiza-
tion of hairstyles via orthogonalization. In: IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (2021)

9. Tan, Z., Chai, M., Chen, D., Liao, J., Chu, Q., Yuan, L., Tulyakov, S., Yu, N.:
Michigan: Multi-input-conditioned hair image generation for portrait editing. ACM
Transactions on Graphics (TOG) 39(4), 95 (2020)

10. Zhu, P., Abdal, R., Femiani, J., Wonka, P.: Barbershop: Gan-based image com-
positing using segmentation masks. ACM Transactions on Graphics (TOG) 40(6),
215:1–215:13 (2021)



GAN with Multivariate Disentangling for Controllable Hair Editing 9

(a) Editing color

(b) Editing shape and texture

(c) Hybrid Editing of transfering and fine-tuning with sliding bars

Fig. 9. A group of editing examples using CtrlHair’s Demo with User Interface. Please
click on the images to open the animation

https://github.com/XuyangGuo/xuyangguo.github.io/blob/main/database/CtrlHair/resources/demo1.gif
https://github.com/XuyangGuo/xuyangguo.github.io/blob/main/database/CtrlHair/resources/demo2.gif
https://github.com/XuyangGuo/xuyangguo.github.io/blob/main/database/CtrlHair/resources/demo3.gif
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Mask Reference Input MichiGAN LOHO BarberShop Ours

superior in shape alignment and inpainting

Fig. 10. Comparison with existing methods on hairstyle transfer with a reference image
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Fig. 11. Editing fine factors of attributes simultaneously and separately. For a given
portrait in the upper left corner of each subfigure, CtrlHair can edit the hair by sliding
a set of bars
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Input Continuous Editing

Fig. 12. Continuous editing of hue of color

Input Continuous Editing

Fig. 13. Continuous editing of saturation of color
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Input Continuous Editing

Fig. 14. Continuous editing of brightness of color

Input Continuous Editing

Fig. 15. Continuous editing of variance of color
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Input Continuous Editing

Fig. 16. Continuous editing of curliness of texture

Input Continuous Editing

Fig. 17. Continuous editing of smoothness of texture
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Input Continuous Editing

Fig. 18. Continuous editing of hair-strand-thickness of texture

Input Continuous Editing

Fig. 19. Continuous editing of length of shape
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Input Continuous Editing

Fig. 20. Continuous editing of volume of shape

Input Continuous Editing

Fig. 21. Continuous editing of bangs of shape
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Input Continuous Editing

Fig. 22. Continuous editing of direction of shape
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Fig. 23. A wide variety of hair is obtained for the person in the red box
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